(Wireless) Scheduling, Graph Classes, and c-Colorable Subgraphs
نویسندگان
چکیده
Inductive k-independent graphs are a generalization of chordal graphs and have recently been advocated in the context of interference-avoiding wireless communication scheduling. The NP-hard problem of finding maximum-weight induced c-colorable subgraphs, which is a generalization of finding maximum independent sets, naturally occurs when selecting c sets of pairwise non-conflicting jobs (modeled as graph vertices). We investigate the parameterized complexity of this problem on inductive k-independent graphs. We show that the Maximum Independent Set problem is W[1]-hard even on 2-simplicial 3-minoes—a subclass of inductive 2-independent graphs. On the contrary, we prove that the more general Max-Weight c-Colorable Subgraph problem is fixed-parameter tractable on edge-wise unions of cluster and chordal graphs, which are 2-simplicial. In both cases, the parameter is the solution size. Aside from this, we survey other graph classes between inductive 1-independent and inductive 2-independent graphs with applications in scheduling.
منابع مشابه
On Minimal Non-(2,1)-Colorable Graphs
A graph is (2, 1)-colorable if it allows a partition of its vertices into two classes such that both induce graphs with maximum degree at most one. A non-(2, 1)-colorable graph is minimal if all proper subgraphs are (2, 1)colorable. We prove that such graphs are 2-edge-connected and that every edge sits in an odd cycle. Furthermore, we show properties of edge cuts and particular graphs which ar...
متن کاملOn disjoint matchings in cubic graphs: Maximum 2-edge-colorable and maximum 3-edge-colorable subgraphs
We show that any 2−factor of a cubic graph can be extended to a maximum 3−edge-colorable subgraph. We also show that the sum of sizes of maximum 2− and 3−edge-colorable subgraphs of a cubic graph is at least twice of its number of vertices.
متن کاملMaximum Δ-edge-colorable subgraphs of class II graphs
A graph G is class II, if its chromatic index is at least ∆ + 1. Let H be a maximum ∆-edge-colorable subgraph of G. The paper proves best possible lower bounds for |E(H)| |E(G)| , and structural properties of maximum ∆-edge-colorable subgraphs. It is shown that every set of vertex-disjoint cycles of a class II graph with ∆ ≥ 3 can be extended to a maximum ∆-edge-colorable subgraph. Simple graph...
متن کامل"Rent-or-Buy" Scheduling and Cost Coloring Problems
We study several cost coloring problems, where we are given a graph and a cost function on the independent sets and are to find a coloring that minimizes the function costs of the color classes. The “Rent-or-Buy” scheduling/coloring problem (RBC) is one that captures e.g., job scheduling situations involving resource constraints where one can either pay a full fixed price for a color class (rep...
متن کاملOn-Line 3-Chromatic Graphs I. Triangle-Free Graphs
This is the first half of a two-part paper devoted to on-line 3-colorable graphs. Here on-line 3-colorable triangle-free graphs are characterized by a finite list of forbidden induced subgraphs. The key role in our approach is played by the family of graphs which are both triangleand (2K2 + K1)-free. Characterization of this family is given by introducing a bipartite modular decomposition conce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1712.06481 شماره
صفحات -
تاریخ انتشار 2017